Urine Pre-Clinical (PC) CartiLaps® ELISA

For the quantification of degradation products of C-terminal telopeptides of type II collagen (CTX-II) in non-human urine and cell culture supernatants.

The Urine PC CartiLaps® ELISA is For Research Use Only. Not for use in diagnostic procedures. Nordic Bioscience Diagnostics is not responsible for any other use of the product or consequences hereof than the one specified above. Neither for misuse, e.g. use deviating from the procedure described in this manual.

Furthermore, Nordic Bioscience Diagnostics A/S is not to be made responsible for any diagnoses or conclusions made by the user or third party based on the results obtained with the Urine PC CartiLaps® ELISA kit nor for any consequences such interpretations may cause.
INTRODUCTION

Intended use
The Urine PC CartiLaps® ELISA detects degradation products of C-terminal telopeptides of type II collagen (CTX-II) in non-human urine and cell culture supernatant. The test is intended For Research Use Only. Not for use in diagnostic procedures.

Limitations
The use of the test has not been established for determination of the level of cartilage destruction.

Background
Disruption of the structural integrity of cartilage is the major histological finding in osteoarthritis and rheumatoid arthritis. Type II collagen is the major organic constituent of cartilage and fragments of type II collagen (CTX-II) are being released into circulation and subsequently secreted into urine following degradation of cartilage. In non-human urine, the CTX-II fragments can be quantified by Urine PC CartiLaps® ELISA, which in addition is applicable for cell culture supernatants. The corresponding test for human application, i.e. the Urine CartiLaps® ELISA, has been reported to be useful in prediction of progression of osteoarthritis (Reijman (2003), Garnero (2003)) and in other clinical investigations (please refer to REFERENCES).

Principle of the procedure
The Urine PC CartiLaps® ELISA is a modification of the Urine CartiLaps® ELISA (Christgau (2001), which is based on the competitive binding of a monoclonal antibody to urinary fragments of type II collagen or to biotinylated, synthetic peptides bound to the surface of microtitre plates coated with streptavidin. The modification allows a broadening of the measuring range facilitating the measurement of non-human urines having a wide range of CTX-II values. Initially, biotinylated, synthetic peptides are bound to the surface of streptavidin-coated wells of the microtitre plate. After washing, standards, controls and urine samples are pipetted into the wells followed by addition of a solution of the monoclonal antibody. The wells are washed, and a solution of peroxidase-conjugated anti-mouse immunoglobulin (rabbit) is added to the wells. Following the second washing step, a chromogenic substrate is added to all wells and the colour reaction is stopped with sulphuric acid and the absorbance is measured.

PRECAUTIONS

The following precautions should be observed in the laboratory:
• Do not eat, drink or smoke where immunodiagnostic materials are being handled.
• Do not pipette by mouth.
• Wear gloves when handling immunodiagnostic materials.
• Do not use reagents beyond their expiration date and do not mix reagents from different lots of kits.

Warnings
For in vitro use only.
• All reagents and laboratory equipment should be handled and disposed of as if they were infectious.
• Do not use kit components beyond the expiry date and do not mix reagents from different lots.
Storage
Store the Urine PC CartiLaps® ELISA kit at 2-8°C upon receipt. Under these conditions the kit is stable up to the expiry date stated on the box.

MATERIALS

Specimen collection
Spot urine may be used and these are stable for 24 hours at 4°C. For longer storage the urine and cell culture supernatants should be stored frozen (<-18°C). Prior to use, urine specimens should be shaken and sedimentation allowed for a minimum of 30 minutes.

Materials supplied
Before using the kit, please read the section on Precautions. The kit contains reagents sufficient for 96 determinations.

Streptavidin coated microtitre plate (MTP)
Microwell strips (12 x 8 wells) pre-coated with streptavidin. Supplied in a plastic frame.

Standard A (Vial A)
One vial (min. 8.0 mL) of a ready-for-use TRIS-buffered solution containing protein stabilizer, detergent and preservative.

Standard B (Vial B)
One vial (min. 0.5 mL) of ready-for-use synthetic peptide in a TRIS-buffered solution containing protein stabilizer, detergent and preservative. The exact concentration of synthetic peptide is stated in the accompanying Technical Data Sheet.

Control (Vial CO)
One vial (min. 0.5 mL) of ready-for-use synthetic peptide in a TRIS-buffered solution containing protein stabilizer, detergent and preservative. The exact concentration of synthetic peptide is stated on the vial and the accompanying Technical Data Sheet.

Biotinylated Antigen (Vial no. 1)
One vial (min. 12.0 mL) of ready-for-use biotinylated, synthetic peptide in a PBS-buffered solution containing protein stabilizer, detergent and preservative.

Primary Antibody (Vial no. 2)
One vial (min. 18.0 mL) of ready-for-use monoclonal antibody in a TRIS-buffered solution containing protein stabilizer, detergent, preservative and a red dye.

Peroxidase Conjugated Antibody (Vial no. 3)
One vial (min. 12.0 mL) of ready-for-use peroxidase-conjugated anti-mouse immunoglobulins (rabbit) in a TRIS-buffered solution with protein stabilizer, detergent, preservative and a blue dye.

Substrate Solution (Vial TMB)
One vial (min. 12.0 mL) of a ready-for-use tetramethylbenzidine (TMB) substrate in an acidic solution. Please note that the chromogenic substrate might appear slightly bluish.

Stopping Solution (Vial ST)
One vial (min. 12.0 mL) of ready-for-use 0.18 M sulfuric acid.

Washing Solution (Vial W)
One vial (min. 20.0 mL) of a concentrated washing buffer with detergent and preservative.

Sealing tape
Adhesive film for covering wells during incubation.
Materials required - not supplied

- Container for preparing the Washing Solution.
- Precision micropipette to deliver 10 µL.
- Precision 8 or 12-channel multipipette to deliver 100-150 µL.
- Distilled water.
- Refrigerator (2-8°C).
- Microtiter plate reader for reading at both 450 nm and 650 nm.

ASSAY PROCEDURE

For optimal performance of the assay, it is important to comply with the instructions given below. Equilibrate all reagents to room temperature (18-22°C) prior to use. Determine the number of strips needed for the assay. It is recommended to test all samples in duplicate. In addition, for each run a total of 18 wells are needed for standards and control. Place the appropriate number of strips in the plastic frame. Store unused immunostrips in the tightly closed foil bag with desiccant capsules.

Assay procedure

1 Preparation of standards

Standards covering the appropriate measuring range are prepared by dilution of Standard B in Standard A. Usually six two-fold dilutions of Standard B, in addition to Standard A and Standard B, will provide a suitable measuring range for most purposes.

Example:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Preparation</th>
<th>Calculated CTX-II conc. (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD.B</td>
<td>Ready-for-use</td>
<td>100.0</td>
</tr>
<tr>
<td>STD.C</td>
<td>50µL STD.B + 50µL STD.A</td>
<td>50.0</td>
</tr>
<tr>
<td>STD.D</td>
<td>50µL STD.C + 50µL STD.A</td>
<td>25.0</td>
</tr>
<tr>
<td>STD.E</td>
<td>50µL STD.D + 50µL STD.A</td>
<td>12.5</td>
</tr>
<tr>
<td>STD.F</td>
<td>50µL STD.E + 50µL STD.A</td>
<td>6.25</td>
</tr>
<tr>
<td>STD.G</td>
<td>50µL STD.F + 50µL STD.A</td>
<td>3.13</td>
</tr>
<tr>
<td>STD.H</td>
<td>50µL STD.G + 50µL STD.A</td>
<td>1.56</td>
</tr>
<tr>
<td>STD.A</td>
<td>Ready-for-use</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2 Pre-dilution of test specimens

All specimens, except those delivered with the kit (i.e. standard and control) must be pre-diluted 1+3 in standard A prior to testing (e.g. 10 µL (specimen) + 30 µL (Std. A)).

3 Pre-incubation

Add 100 µL of Biotinylated Antigen (vial no. 1) to each well, cover with sealing tape, and incubate for 30±5 minutes at room temperature (18-22°C) without shaking.

4 Washing

Wash the immuno strips 5 times manually with Washing Solution (vial W) diluted 1 + 50 in distilled water. Using an automated plate washer, follow the instructions of the manufacturer or the guidelines of the laboratory. Usually 5 washing cycles are adequate. Make sure that the wells are completely emptied after each manual or automated washing cycle.
5 **Primary incubation**
Pipette 10 µL of either Standards (vial A-H), Control (vial CO) or unknown samples into appropriate wells followed by 150 µL Primary Antibody (vial no. 2). Cover the immunostrips with sealing tape and incubate for 21±3 hrs in a refrigerator (2-8°C) without shaking.

6 **Washing**
See step 2.

7 **Secondary incubation**
Add 100 µL of the Peroxidase-Conjugated Antibody solution (vial no. 3) to each well. Cover the immunostrips with sealing tape and incubate for 60±5 minutes at room temperature (18-22°C) without shaking.

8 **Washing**
See step 2.

9 **Incubation with chromogenic substrate solution**
Pipette 100 µL of the Substrate Solution (vial TMB) into each well, cover the immunostrips with sealing tape and incubate for 15±2 minutes in the darkness at room temperature (18-22°C) without shaking.

10 **Stopping of color reaction**
Pipette 100 µL of the Stopping Solution (vial ST) into each well.

11 **Measurement of absorbance**
Measure the absorbance at 450 nm with 650 nm as reference within two hours.

Limitations of the procedure.
If the absorbance of a sample is lower than Standard B, it is recommended that the sample be diluted in Standard A.

QUALITY CONTROL

Good Laboratory Practice (GLP) requires the use of quality control specimens in each series of assays in order to check the performance of the assay. Controls should be treated as unknown samples, and the results analysed with appropriate statistical methods.

RESULTS

Calculation of results
Construct a standard curve using a four-parametric logistic curve fit, and determine the CartiLaps® concentration of the Control (CO) and each of the samples by interpolation on the curve.
Example of results obtained

<table>
<thead>
<tr>
<th>Sample</th>
<th>CTX-II concentration (µg/L)</th>
<th>Absorbance Abs<sub>450-650nm</sub> Obs 1 / Obs 2 (Abs.)</th>
<th>Mean (Abs.)</th>
<th>Interpolated CTX-II concentration (µg/L)</th>
<th>Conc. Corrected for 4X dilution (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard A</td>
<td>0.00</td>
<td>1.962/1.904</td>
<td>1.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard H</td>
<td>1.4</td>
<td>1.541/1.681</td>
<td>1.611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard G</td>
<td>2.9</td>
<td>1.329/1.322</td>
<td>1.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard F</td>
<td>5.8</td>
<td>0.987/0.948</td>
<td>0.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard E</td>
<td>11.5</td>
<td>0.603/0.582</td>
<td>0.593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard D</td>
<td>23.0</td>
<td>0.357/0.352</td>
<td>0.355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard C</td>
<td>46.0</td>
<td>0.178/0.178</td>
<td>0.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard B</td>
<td>92.0</td>
<td>0.098/0.094</td>
<td>0.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (CO)</td>
<td></td>
<td>0.312/0.292</td>
<td>0.302</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td>0.708/0.716</td>
<td>0.708</td>
<td>9.3</td>
<td>37.2</td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td>0.263/0.297</td>
<td>0.280</td>
<td>28.7</td>
<td>114.8</td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td>0.140/0.134</td>
<td>0.137</td>
<td>62.6</td>
<td>250.4</td>
</tr>
</tbody>
</table>

Note: The data above are for illustration only and should not be used for calculation of results.

Correction with creatinine

The CTX-II value determined as described above should be corrected with creatinine concentration.

Determine the concentration of creatinine (mmol/L) in the sample using an enzymatic colorimetric method for clinical chemistry analysers (e.g. CREA plus for Roche/Hitachi analysers) or equivalent, and perform the correction using the equation:

$$\text{Corrected CTX-II Value (µg/mmol)} = \frac{\text{CartiLaps (µg/L)}}{\text{Creatinine (mmol/L)}}$$

Performance characteristics

Detection limit 0.75 µg/L

The detection limit was determined to 0.75 µg/L, which is the concentration corresponding to three standard deviations below the mean of 21 determinations of the absorbance of the Standard A (vial A).

Precision <8.1%

<table>
<thead>
<tr>
<th>Intraassay <4.6% (n=20)</th>
<th>Interassay <8.1% (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>10.2</td>
<td>0.41</td>
</tr>
<tr>
<td>30.4</td>
<td>1.2</td>
</tr>
<tr>
<td>62.1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Dilution/Linearity 97%

The dilution recovery of the Urine PC CartiLaps[®] ELISA was determined to 97%. Urine samples with CTX-II values inside the measuring range were appropriately diluted in Standard A, the concentration of CTX-II was determined in the Urine PC CartiLaps[®] ELISA and the recovery calculated by correction with the dilution factor.
Specificity

The epitope being detected in the Urine PC CartiLaps® ELISA is highly conserved and therefore the test can be applied to urine samples from most species, including non-human primates, bovines, horses, pigs, rabbits, rats and mice.

Expected values

It is advisable for each laboratory to establish its own reference ranges. As an example, the mean values and standard deviations for various species are given below.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of samples</th>
<th>Mean CTX-II value (µg/mmol)</th>
<th>Range (µg/mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog (study 1)</td>
<td>169</td>
<td>69,5</td>
<td>4,1-260,4</td>
</tr>
<tr>
<td>Dog (study 2)</td>
<td>75</td>
<td>666</td>
<td>26,6-2132</td>
</tr>
<tr>
<td>Guinea Pig (study 3)</td>
<td>172</td>
<td>43,9</td>
<td>1,1-231,2</td>
</tr>
<tr>
<td>Guinea Pig (study 4)</td>
<td>60</td>
<td>388</td>
<td>57,4-840</td>
</tr>
<tr>
<td>Rabbit (study 5)</td>
<td>65</td>
<td>41,9</td>
<td>7,6-114</td>
</tr>
<tr>
<td>Rabbit (study 6)</td>
<td>165</td>
<td>625,2</td>
<td>60,8-1745</td>
</tr>
<tr>
<td>Rat (study 7)</td>
<td>56</td>
<td>24,3</td>
<td>7,8-68,2</td>
</tr>
<tr>
<td>Rat (study 8)</td>
<td>45</td>
<td>95,4</td>
<td>35,5-135</td>
</tr>
<tr>
<td>Cell Culture Supernatant</td>
<td>54</td>
<td>69,8</td>
<td>2,0-237,0</td>
</tr>
</tbody>
</table>

REFERENCES

1. Ceunick F De, Sabatini M, Renoux V, Nanteuil G de, Pastoureau P. Urinary collagen type II C-telopeptide fragments are sensitive markers of matrix metallo-proteinase dependent cartilage degradation in rat adjuvant induced arthritis. J Rheumatol (2003); 30: 1561-1564.

